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Generalized stochastic equations 
K. C. SOT and K. C. YEH 
University of Illinois, Urbana, Illinois, U.S.A. 
MS.  received 19th February 1968 

Abstract. We consider the dynamic system of N particles describable by the fluctua- 
tion equations 

where x and F are both N-dimensional vectors. The corresponding stochastic 
equations of the probability density u(Xm, t )  for a subsystem of m < N particles are 
shown to be 

i = F(x,  t) 

Here the summation for the repeated index goes from 1 to m and X ,  = (xl, x2, . .., x,,,). 
For the Coulomb-potential case, this set is equivalent to the BBGKY hierarchy 
including the Liouville equation. Moment equations have also been obtained. 

The set of exact stochastic equations and the set of Fokker-Planck equations are 
related in that the latter can be considered as a time expansion of the former on 
conditional averages. The derived Fokker-Planck equations differ from the con- 
ventional ones in that the coefficients are expressed as conditional averages. These 
extra conditions are very important for a class of problems in which the random force 
must be computed self-consistently. 

1. Introduction 
The Fokker-Planck equation has often been used to describe the distribution of a 

particle in a random field (Chandrasekhar 1943, Sturrock 1960, Stratonovich 1963). When 
such a technique is applied to a homogeneous plasma in order to obtain a kinetic equation, 
certain difficulties arise (Gasiorowicz et al. 1956). In  the first place, the electric field must 
be determined consistently and the coefficients cannot be found explicitly without further 
assumptions. Moreover, the coefficients are given as averages of functionals of the random 
field (Sturrock 1966). A na'ive interpretation of these averages may give incorrect results. 
For example, in the derivation of the friction and diffusion coefficients of the Fokker- 
Planck equation in a plasma, Hubbard (1961) introduced the dielectrically screened field 
through physical arguments. I t  can be shown that the additional physical arguments are 
unnecessary if the set of generalized stochastic equations are used. 

A set of generalized stochastic equations can be derived by a method similar to that 
used by Stratonovich (1963). In  order to include the class of problems whose force must 
be computed self-consistently, previous forms of the Fokker-Planck equation must be 
modified. The  modification comes about because of the possible correlation between 
the random force and the particle position. Details are given in 5 2. Generalizations to 
conditional density functions, to higher dimensions and to the case of a more general 
fluctuation equation are discussed in 5s 3 and 4. In  5 5 a set of exact stochastic equations 
is derived. An alternate derivation of the exact equations is shown in appendix 2. For 
Coulomb-potential problems this set of exact stochastic equations is shown in appendix 3 
to be equivalent to the BBGKY hierarchy, including the Liouville equation. However, 
the new form given by (22) expresses clearly the importance of conditional averages. It 
also shows that the Fokker-Planck equation can be considered as time expansion on 
conditional averages. Moments of the exact stochastic equation are obtained in 5 6. 

2. Derivation of generalized stochastic equations 

form 
We are interested in the dynamic system describable by the fluctuation equation of the 

3i: = EF(X, t )  (1) 
t Now at Clarkson College of Technology, Potsdam, New York, U.S.A. 
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where the force F is a random function of x and t and the parameter E is used to indicate 
the smallness of the quantity. Stratonovich has shown that such an equation leads to a 
Fokker-Planck equation, Implicit in his assumption is that the force is statistically indepen- 
dent of the position of the particle. Such an assumption is invalid for the class of problems 
in which the force must be computed self-consistently. One such example is the plasma 
problem where the force is derived from particle Coulomb interactions. Therefore, 
Stratonovich's result must be modified and generalized. 

Let the increment of displacement be 

z( t )  = x ( t ) - x ( 0 ) .  (4 
The probability density of x at t is then related to the probability density of z(t)  by 

w(x ,  t )  = J w(x-z, Olz(t) = z>wZ(z) dz 

where the integration limits go from - 03 to + 03. The subscript on w denotes the process. 
Since x is the process of interest, it is omitted for simplicity. We note the condition x ( t )  = z 
on the first factor of the integrand. It comes about because the increment and the initial 
position may not be statistically independent, Expanding w ( x - z ,  Olx(t) = z )  by a Taylor 
series and carrying out the integration in (3) we obtain 

w(x, t )  = (1 + L ) w ( x ,  0 )  (4) 
where the operator is given by 

An equation involving w alone can be obtained by taking partial derivatives with respect to 
t and by taking the inverse of (4). The result is 

8w(x, t) /2t  = L(1 + L ) - l w .  (6) 

Equation (6) is, formally, the same as that given by Stratonovich except that the moments 
are conditional moments as shown in (5). I n  order to express these moments explicitly in 
terms of F we expand z in a perturbation series 

z = E Z l + E 2 X 2 +  ... . (7 
t Consider the sum of two random processes 

x =  YSZ. (4 
In general Y and Z are not necessarily independent, The probability density function of x is given 
by 

where w y ( x - z I Z  = z )  is the conditional probability density of Y = x - z  given Z = z and wz(z)  
the probability density of z.  For the processes related through (2) we can immediately obtain (3) 
by using formula (B). We note that in (3) w ( x  -2, Olz(t) = z)  is a conditional probability density of 
x ( t )  = x--z at t = 0 given z(t)  = z. 

In case there is another process W which is again not necessarily independent of Y and Z ,  
equation (B) is still valid, provided we impose the extra condition W = U: on all probability density 
functions. These generalizations are 
needed in 5 3.  

Generalization to higher conditional densities is obvious, 
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Expanding F similarly in a Taylor series gives us 

Substituting (7) and (8) into (l), we find 

... . 
The  desired equation is obtained when (9) is substituted into (6), giving 
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(8) 

+ ... . (10) 

Equation (10) is the generalized stochastic equation taking into account the correlation 
between the random force and the initial position of the particle. I n  equation (lo), 
F = F(x ,  t), F, = F(x ,  t + ~ ) ,  K ( F l ,  F3)  = (F,F,)-  ( F l ) ( F 3 ) ,  where () denotes the 
ensemble average. I t  should be noted that the starting point of the present derivation is (3) 
which is perfectly general for processes related by (2). The  only requirement is that the 
process is sufficiently well behaved so that Taylor series exists for w ( x - z ,  Ojx(t) = z).  
The fact that an equation of the form (10) applies to non-Markovian processes was pointed 
out by Bartlett (1955). The  Markovian limit comes in when we let t be much larger than 
the correlation time, and cut off all terms higher than 2. In  this case the difference in the 
conditional average and the non-conditional average is of the order of E or higher. This 
means that all conditional averages in the third and fourth terms on the right-hand side of 
(10) can be approximated by the corresponding non-conditional ones. However, the 
conditional averages of the first and second terms on the right-hand side of (10) must be 
computed to the order E .  This feature is important if the force depends on the unperturbed 
particle trajectories. When applied to the plasma case this gives rise to the screening effect. 

3. Generalization to conditional density functions and to higher dimensions 
It is often of interest to find the conditional density w(x, tl3, t ) ,  viz. the probability 

density of finding a particle at x at time t given the particle at 3 at time f. The  extra condition 
~ ( t )  = i? enters on all probability density functions in (3). Since the extra condition appears 
merely as a parameter, we can immediately conclude that w(x, t12, t )  satisfies (lo), except 
that we must impose the extra condition 3(i) = 2 on all averages. It is obvious that we 
may extend directly to the vector case and let 

(a, t )  = (?,, t,; 3 2 ,  t,; ...; Zm, tm). 
The results given here can also be generalized to higher dimensions. For a system of 

fluctuation equations 

xi = eFj(x ,  t ) ,  j = 1, 2, ..., N (1 1) 
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where x = (xl, x2, ..., xN), the generalized stochastic equation can be shown to be (So 1967) 

+ ... * (12) 
Here the subscript c indicates that the averages are subject to the condition x(0) = x and 
the subscript T indicates that the function is evaluated at t + T .  

In  a many-particle system equations of the form (12) can also be derived for the joint 
density functions giving rise to a hierarchy of generalized stochastic equations. For example, 
if we consider a subsystem of (11) with j running from 1 through m, the force in (11) is 
then a random function of (xl, x2, ..., x,?). The  density function w(xl, x,, ..., xm, t )  can be 
shown to satisfy (12) with summation running from 1 to m. The condition c now stands 
for xl(0) = xl, x2(0) = x2, ..., x,(O) = xnL. The discussion of this hierarchy of equations 
and especially their application to plasma problems will be considered in a later publication. 

4. Perturbation by small random forces 

it to the system describable by 
The dynamic system given by (1) or (11) is rather restrictive. We wish to generalize 

xj = F j O + e F j  j = 1 , 2 ,  ..., A-. (13) 
The  general method is to transform (13) into (11) where only small random forces are 
present. The  transformation can be made if we know the unperturbed trajectories (or 
more generally, the integrals of the unperturbed system) as considered by So (1967). We 
shall illustrate the approach for the simple, but important, case where 

x = A x + E F .  (14) 

y = e-Atx, x = eAiy (15) 

Here x and F are both N-dimensional vectors, and A = [uij] is an N x  N constant matrix. 
Making the transformation 

we obtain 
y = EeFAtF. 

If we let [A,,-l(t)] = e -At ,  then (16) is equivalent to 

yz  = € A Z j - l ( t ) F j ( y ,  t )  i = 1,  2, ..., N (17) 
where F 3 ( y ,  t )  = F,(eAty, t )  and the convention of summation index is used. 

according to (12) : 
A stochastic equation for wy(y,  t ) ,  the density of y( t ) ,  may be immediately written down 

Here the subscript c' refers to the condition y(0)  = y .  We wish now to transform (18) 
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back into the original variables. Details are given in appendix 1. For a conservative system, 
u y ( e - A t x ,  t )  = w(x,  t )  where u ( x ,  t )  is the density of x(t) .  The resulting equation is 

8 u ( x ,  t )  aw a 
E .., (Fj >em __- +a..x.-  = - 

1 3  3 at 2Xi 

where the subscript c indicates that the averages are subject to the condition x(0) = e-Atx. 
For the more general fluctuation equations (1 3) where the associated unperturbed 

system may not be autonomous, a stochastic equation similar to (18) can still be obtained. 
In  such cases, it may be more convenient to work with w y  than w .  

I n  passing we remark that a hierarchy of generalized stochastic equations can also be 
obtained as that discussed in $ 3 .  

5. Relations to the Liouville equation and the BBGKY hierarchy 
In  previous sections we have shown that fluctuation equations of the form (1 1) and (13) 

lead to a system of generalized stochastic equations. In  applications these equations are 
truncated and hence are approximate. We note that in (12) and (18), when t + O ,  all 
higher-order terms vanish and therefore the resulting equation becomes exact. t For this 
limit, (12) reduces to (we set E = 1 since the equation is exact) 

au Fit=o = - -(F3(X, t)jx(O) = . 
ax, t = o  

Since we have chosen 0 arbitrarily as the initial time, in general we have 

For a subsystem of m < N particles, similar considerations give us the equation 

where the summation for the repeated index goes only from 1 to m and 

x, = (x1, x2, . * . >  x,), X,(t) = {%(t),  %(t) ,  * * ' ,  %a(t)). 

Equations (21) and (22) look deceptively simple. For the N-particle system with 
Coulomb force they lead directly to the BBGKY hierarchy and the Liouville equation. 
This is done in appendix 3. Therefore, the hierarchy given by (22) and the BBGKY 
hierarchy are just different modes of representing the same dynamic system. The  generalized 
stochastic equations (12) and (19) can be considered as a time expansion of (21) on condi- 
tional averages. I t  is possible to obtain the kinetic equation for a plasma using the generalized 
stochastic equations instead of the BBGKY hierarchy. This will be done in the next paper. 

f We assume that the series given by (12) and (18) are convergent. An altemate approach is 
given in appendix 2 which does not require such an assumption. 
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6. Moment equations 
Consider the dynamic system described by 

x = v  
G = F(x ,  v ,  t )  

The fundamental equation (21) now becomes 

W x , v , t )  a 2 +- . ( v f ) + - - .  ( F l x ( t )  = x ,  v ( t )  = v ) f  = 0 at ax av 

(23) 

where we note x = (xl, x2, x3, ul, U?,  us) and f is the one-particle density function. Note 
that (24) reduces to the Vlasov equation if I: is approximately independent of the conditions 
x(t) = x,  v( t )  = v .  In  general, such a reduction is not possible. For the Coulomb potential 
problem (24) is equivalent to the first equation in BBGKY hierarchy as shown in appendix 3. 

Multiply (24) by 1, mv and &" successively and integrate over velocity spaces; we 
obtain 

2n -+ V . ( n ( v ) , )  = 0 
8t 

The velocity average is denoted by 

where no is the average particle density, a constant, and n is the local probable number 
density. The moment equations (25) are exact but they are only formal since they are not 
closed. However, the form of (25) may be convenient for making certain suitable approxi- 
mations. 

7. Conclusion 
A set of exact stochastic equations (22) has been derived for the dynamic system (11). 

The set is shown to be equivalent to the BBGKY hierarchy for the Coulomb potential 
problem. The moment equations are also obtained. The generalized stochastic equa- 
tions (12) and (19) can be viewed as time expansion on conditional averages of (2.2). For 
times much larger than the correlation time these generalized stochastic equations can be 
truncated and lead directly to the Fokker-Planck equations. The derived Fokker-Planck 
equations differ from the conventional ones in that the coefficients are expressed as condi- 
tional averages. This new feature is important if the force on the particle depends on the 
particle trajectory as in the case of a gaseous plasma. 
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Appendix 1 
We wish to indicate here intermediate steps to go from (18) to (19). We start with the 
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term on the left of (18). For a conservative system de tewAt  = 1;  we therefore have 

8wy(y, t )  aw(x,  t )  ax, am(%, t )  
at at at ax, 

24x, t) 

+-- - -- 

t )  + a i p f  -. = -_ 
at ax, 

For the first term on the right of (18), we note that A,,-l(t)2xk/i?y3 = 6,, andy(0) = x(0). 
I t  can be evaluated straightforwardly as follows : 

For the second term on the right of (18) we proceed as follows: 

(XkL-l(t + o)F,[exp{A(t + U)} t + 01) >, d o  w 

where we have made use of the relation hkl - l ( t+o)  = Xkh-l(t)Xhl-l(o). The  remaining 
terms in (18) can be evaluated similarly. 

Appendix 2 
Here we wish to prove the generalization of (21). Since we shall not make the 

restrictive assumption (14) and the derivation is exact, we go back to (11) with E = 1. 
Let t,hj(t, t o ,  xo) = x j ( t )  be the solution of (11) through the initial point ( to ,  xo). Here 
xo = (xl0, xzo, ..., xNo). Let J b e  the Jacobian defined by J=  $z ,  ..., $N)/8(xlo, xzo, ..., xNo). 
For convenience we take J > 0. Then the initial density and the density at t are related 
through 

Since the left-hand side is not a function of t ,  its time derivative vanishes. The  time deriva- 
tive of the right side yields 

4x0 ,O)  = w($(t, to, xo), O J .  

Now along the solution 
d J  i3Fj - =  J Z -  dt j = l  ax, 

(Kaplan 1958). Consequently the above equation reduces to 
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It is a simple matter to prove that the equation given above is equivalent to the Liouville 
equation. Integrating over x , + ~ ,  ..., xN, we obtain 

8w(Xm,t) a 
at j =  1 axj 

-+ 2 - (FjIX,(t) = X,)w(X,, t )  = 0 7% = 1 , 2 ,  ... N (A2) 

which is identical with (22). 

Appendix 3 

for the Coulomb potential problem. In  this case x, = (x,, v l )  and we let 
We wish to show that the stochastic equations (22) lead directly to the BBGKY hierarchy 

fl =f(x1, v1, t )  = Vw(x1, t ) ,  f2 = f(x1, V I ,  xj, v j ,  t )  = V2w(x1, x j ,  t ) .  
Equation (22) becomes 

The  conditional average of Coulomb force on electron 1 is given by 

where +(xl - xj) = e2/lxl- xjl. Substituting (A3) into (A5), we obtain 

which is the first equation in the BBGKY hierarchy. The  entire hierarchy including the 
Liouville equation can be obtained in a similar manner. 

References 
BARTLETT, M. S., 1955, Stochastic Processes (London: Cambridge University Press), 8 3.5. 
CHANDRASEKHAR, S., 1943, Rev. Mod. Phys., 15, 1. 
GASIOROWICZ, S., NEUMAN, M., and RIDDELL, R. J., JR., 1956, Phys. Rec., 101, 922. 
HUBBARD, J., 1961, Proc. R. Soc. A, 261, 371. 
KAPLAN, W., 1958, Ordinary Differential Equations (Reading, Mass. : Addison-Wesley), pp. 471-509. 
So, K. C., 1967, Ph.D. Thesis, University of Illinois. 
STRATONOVICH, R. L., 1963, Topics in the Theovy of Random Noise, Vol. 1 (New York: Gordon and 

STURROCK, I?. A., 1960, J .  Math. Phys., 1, 405. 
- 

Breach), pp. 83-129. 

1966, Phys. Rev., 114, 186. 


